时间: 2024-10-16 05:23:44 | 作者: 废旧拉链分离设备
摘 要:车载充电机是新能源汽车动力单元的核心部位,又是与电网电压相接的设备,高效、高功率因数、小体积是其一定要具有的功能,为实现高效率和宽输出电压范围调节,DC/DC变换采用半桥三电平LLC谐振双向直流变换器拓扑电路,以提高充电机的效率和功率因数,通过描述其工作原理与特性设计
新能源汽车的推广关键环节——电动汽车充电机成为其发展的瓶颈,如何快速高效地为电动汽车充电、解决汽车的续航能力,是提升电动汽车加快速度进行发展的重中之重。在能源紧缺的环境下,设计一款节能、高效、大功率密度的充电机是电动汽车行业的最大挑战。
为了提高整机的效率和大功率的设计的基本要求,本设计研究在文献[1-2]中提出前级采用三相六开关的PFC拓扑电路,以提高功率因数,为后级的DC/DC变换器提供稳定在700 V的输入电压,半桥三电平LLC谐振变换器实现输出280~400 V的宽范围电压,是本充电机的核心部位。
其既能满足高电压大功率,又能实现高频软开关技术,以降低变换器开关管的损耗。半桥三电平LLC谐振拓扑电路具有高输入电压、高功率、宽范围输出电压[3],将其应用在新能源汽车的充电机中有很好的应用前景,在阐述工作原理与特性时,给出了设计思路与参数设计及选型仿线 kW输出实验的可行性和实用性。根据充电机所处环境及性能要求,确定其性能指标是:额定输入相电压:220 ±10% V;输出功率:10 kW;输出电流:20 A;输出电压范围:280~400 V;满载效率:≥ 0.98 ;输出电压纹波范围: ±2% 。
半桥三电平LLC谐振直流变换器是将一种直流电变换成另外一种直流电的方法,随着对直流变换器的技术探讨研究,直流变换器逐渐向软开关、多电平、高频化、高功率密度发展。半桥三电平LLC谐振直流变换器的电路如图1所示。Vin为前级BoostPFC拓扑电路输出的700 V直流电压,Cin1与Cin2为容量很大且容值相等的输入电容,S1、S2为三电平变换器的上桥臂开关管,S3、S4为三电平变换器的下桥臂开关管,当开关管处于关断状态时,两端承受的电压为直流母线为中点钳位二极管,把A、B两点间的钳位为
三种状态,三电平由此而得。VD1~VD4为开关管的体二极管,高频变压器具有电气隔离与电压转换作用,在软开关状态下减少开关损耗,保证充电机在高效下提升工作频率,有利于减小充电机的体积。Cr、Lr、Lm为一次侧的谐振网络,Ln为辅助电感,正向运行时不参与谐振,辅助一次侧开关管实现ZVS。Lm采用磁集成技术为高频变压器的漏感,一样能减小充电机的体积。二次侧半桥三电平桥拓扑关于LLC谐振腔与一次侧完全对称,Lm为反向运行时的辅助电感,实现二次侧开关管的软开关条件。
,K是变压器的变比。只要控制D、K就能调节输出电压。本拓扑电路为了更好地实现软开关,采用分时开通和关断同桥臂原理,即S1、S4先关断为超前管,S2、S3后关断为滞后管。
正向运行时,辅助电感Ln被谐振网络输入端钳位,不参与谐振,存在2个谐振频率:fr为串联谐振频率
当fs fr时,工作波形如图2(a)所示,辅助电感Ln、Lm被桥臂电压VAB、VCD钳位,不参与谐振,正负半周期交接处,由于谐振电流续流,一次侧开关管实现ZVS,二次侧始终有电流,体二极管整流为硬开关,没办法实现ZCS而造成损耗。
当fm = fr时,工作波形如图2(b)所示,谐振电流为正弦波,Ln、Lm都不参与谐振,一次侧开关管能实现ZVS,二次侧电流自然续流到0,体二极管能实现ZCS。
当fm fs fr时,工作波形如图2(c)所示,由于开关频率fs小于谐振频率fr,完成串联谐振的半周期后,谐振电流iLr 与励磁电流iLm相等,辅助电感参与谐振,一次侧开关管实现ZVS,二次侧体二极管电流断续,也能轻松实现ZCS[5-6]。现以fm fs fr区域对半桥三电平LLC谐振双向DC/DC变换器的工作状态描述如下。
文献[7]中介绍了两种控制方式,本设计采用第二种同桥臂分时开关,即S1、S4先关断,S2、S3后关断。
模态1:t0时刻,S1、S2开通,体二极管VD5、VD6导通,励磁电感两端的电压为nVo,励磁电流直线上升, iLr呈正弦形式上升,Lr、Cr参与谐振。
模态2:t1时刻, iLr= iLm,体二极管VD5、VD6电流为0,实现ZCS,励磁电感不再钳位,三元件参与谐振,由于LmLr,此过程时间很短, iLr保持不变。
模态3:t2时刻,S1关断,谐振电流iLr给C1充电,C4放电, VAB=1/2 Vin,由于C1两端电压不能突变,使S1实现ZVS。
具有谐振网络的谐振型直流变换器,通过改变开关管的频率来调节谐振网络的增益,是非线性的,由于谐振型直流变换器的谐振网络对输入信号中的频率高低比谐振点附近越来越明显,所以增益特性主要考虑基波分量,高次谐波可忽略。令Mi为一次侧逆变桥的电压增益,M为谐振网络的电压增益,Mr为二次侧逆变桥的电压增益,则
Gf 为调频控制时的电压增益, Gr 为整流桥的基波电压增益,则变换器总的增益为:
从波形图2可知,VAB是一个接近矩形的方波,由一系列的谐波分量叠加,V t AB( ) 的傅里叶级数展开式为:
由此可知,半桥三电平LLC谐振双向直流变换器的总增益只与变换器的变比n、调频模式下的电压增益G
由此可见,LLC谐振变换器的电压增益只跟谐振电感与励磁电感的比K(Lm/Lr)、品质因数Q、归一化开关频率fn有关,当开关频率与谐振频率相等时,Gf=1 。要实现软开关就要先确定K、Q值。
半桥三电平变换器的谐振腔参数设计包含谐振电感Lr、励磁电感Lm、谐振电容Cr[7],这三者又决定品质因数Q和电感比K(Lm Lr)的大小,因此LLC谐振腔的参数设计实际就是对K和Q的选择。对于DC/DC变换器,一定要达到以下指标:全负载范围内实现一次侧开关管的ZVS开通,二次侧的体二极管的ZCS关断;宽电压范围调节输出电压。
根据电气参数计算能够获得变压器变比n、谐振腔的最大最小电压增益Gf和Req的值。只有确保额定输出电压处于LLC谐振腔的最佳工作点,才可能正真的保证全负载范围内通过调频方式控制最大最小电压增益,以此来实现软开关。从图3可知,K值越小,增益曲线电压调节范围越大,所以从电压增益调节角度考虑,K值越小越好。但K值又不能太小,K值减小时,Lm减小,Lm减小就会增加系统的通态损耗,降低了效率,所以K取值范围为:
同时,品质因数Q值越小,电压调节范围越宽,在较窄的开关频率范围内,能实现变换器的宽电压调节。Q值取值范围:
根据K值的电压增益图,结合其性能指标的电气特性,确定K=4,Lm=60,Gmax=1.5,得到谐振电感为15 mH,励磁电感60 mH,辅助电感60 mH,谐振电容0.25 μF。
高频变压器是半桥三电平谐振双向直流变换器的核心器件,其参数影响变换器的效率、电磁干扰及发热情况,选型方面应考虑变压器的磁芯材料、形状、温升以及表面热辐射。
由上面分析可知,匝数比n越大时,A、B两点的有效值就越小,变换器一次侧的电流承受越小,二次侧体二极管电压应力就越大;若n越小时,占空比又容易消失,所以最终选择匝数比必须在输入电压最低时,输出能满足实际需求。因此,确定占空比最大有效值为Deff = 0.8 ,二次侧电压有效值:
其中,Vo为输出值400 V,VDR为体二极管的导通压降1 V。一次侧电压有效值为Vp=350 V。经分析变压器的变比为:
Ae跟磁芯的上限功率和磁芯的有效面积有关,Aw与绕组间的空间和磁芯窗口面积有关。在磁芯空间允许范围内,AP值越小越好。变压器总的视在功率P
3 实验仿线]中提出控制方式有调频移相和变频burst两种控制方案,本设计利用数字信号处理器Tms320F28062作为连续变频burst控制,连续变频burst控制技术采用1个burst周期实现对输出电压电流调节[5]
burst频率最大为开关频率fs,输出纹波小,如图4为不同fburst频率时的输出电压和谐振电流波形。实验仿线:当fburst=100 kHz, fs=100 kHz,D=0.4 时,此时,输出电压为200 V,纹波电压ΔUo =1.5 V,波形如图4(a)所示为谐振电流iLr 与S3漏极源极间电压uds波形。在Uds下降为0时, iLr 虽然大于0,但S3实现零电压开通。
宽电压范围输出,并经过前后级仿真演示,基本能实现功能要求,为设计高效、高功率密度、小型、轻重的车载充电机打下伏笔。