Deprecated: Creation of dynamic property db::$querynum is deprecated in /www/wwwroot/charitychinese.com/inc/func.php on line 1413

Deprecated: Creation of dynamic property db::$database is deprecated in /www/wwwroot/charitychinese.com/inc/func.php on line 1414

Deprecated: Creation of dynamic property db::$Stmt is deprecated in /www/wwwroot/charitychinese.com/inc/func.php on line 1453

Deprecated: Creation of dynamic property db::$Sql is deprecated in /www/wwwroot/charitychinese.com/inc/func.php on line 1454
粗略地介绍几项高效率DC-DC转换器的基本技术_废旧拉链分离设备_火狐体育安卓版下载_欧宝体育官方入口网站
火狐体育安卓版网页登录
品质保证
联系电话
当前位置: 首页 > 产品中心 > 废旧拉链分离设备
废旧拉链分离设备

粗略地介绍几项高效率DC-DC转换器的基本技术

时间: 2024-10-21 11:03:36 |   作者: 废旧拉链分离设备

产品介绍

  用于产生低直流输出电压,升压转换器用于产生高直流输出电压,降压/升压转换器则用于产生小于、大于或等于输入电压的输出电压。本文将重点

  输出电压范围选项: 降压/升压调节器提供额定的固定输出电压,或者提供选项,允许通过外部电阻分压器对输出电压进行编程设置。

  地电流或静态电流: 未输送给负载的直流偏置电流 (Iq) 器件的 Iq低,则效率越高,然而, Iq 可以针对许多条件进行规定,包括关断、负载、脉冲频率(PFM)工作模式或脉冲宽度(PWM)工作模式。因此,为了确定某个应用的最佳升压调节器,最好查看特定工作电压和负载电流下的实际在做的工作效率。

  关断电流:这是使能引脚禁用时器件消耗的输入电流。低Iq对于电池供电器件在休眠模式下能否长时间待机很重要。在逻辑控制的关断期间,输入与输出断开,从输入源汲取的电流小于1 A。

  软启动:具有软启动功能很重要,输出电压以可控方式缓升,从而避免启动时出现输出电压过冲现象。

  开关频率:低功耗降压/升压转换器的工作频率范围一般是500 kHz到3 MHz。开关频率较高时,所用的电感可以更小,还可减少PCB面积,但开关频率每增加一倍,效率就会降低大约2%。

  热关断(TSD):当结温超过规定的限值时,热关断电路就会关闭调节器。一直较高的结温可能由工作电流高、电路板冷却不佳和/或环境和温度高等原因引发。保护电路包括迟滞,因此,发生热关断后,器件会在片内温度降至预设限值以下后才返回正常工作状态。

  电池的可用输出范围为放电时的约3.0 V到充满电时的4.2 V。系统IC需要1.8 V、3.3 V、和3.6 V的电压,以实现最佳工作状态。锂离子电池开始工作时的电压为4.2 V,结束工作时的电压为3.0 V,在此过程中,降压/升压调节器能够给大家提供3.3 V的恒定电压,而降压调节器或低压差调节器(LDO)则可在电池放电时提供1.8 V的电压。理论上,当电池电压高于3.5 V时,可使用降压调节器或LDO产生3.3 V电压,但当电池电压降至3.5 V以下时,系统就会停止工作。允许系统过早关闭会减少电池要重新充电前的系统工作时间。

  如今的低功耗、高效率降压/升压调节器在降压或升压模式下工作时,只要主动操作其中两个开关,就能够更好的降低损耗,提高效率。

  当VIN大于 VOUT, 时,开关C断开,开关D闭合。开关A和B的工作方式和在标准降压调节器中一样,如图3所示。

  当 VIN小于VOUT,时,开关B断开,开关A闭合。开关C和D的工作方式和在升压调节器中一样,如图4所示。

  最困难的工作模式是当VIN 处在VOUT 10%, 范围内时,此时调节器会进入降压/升压模式。在降压/升压模式下,两种操作(降压和升压)会在一个开关周期内发生。应格外的注意降低损耗、优化效率,以及消除由于模式切换造成的不稳定性。这么做的目标是保持电压稳定,使电感中的电流纹波降至最低,保证良好的瞬态性能。

  对于高负载电流,降压/升压调节器采用电流模式、固定频率、脉冲宽度调制(PWM)控制,以获得出色的稳定性和瞬态响应。为确保便携式应用的电池使用寿命最长,还采用了省电模式,在轻载时可降低开关频率。对于无线应用和其它低噪声应用,可变频率省电模式可能会引起干扰,通过增加逻辑控制输入,可强制转换器在所有负载条件下均以固定频率PWM方式工作。

  如今的很多便携式系统都采用单单元锂离子充电电池供电。如上所述,电池会从满充状态时的4.2 V开始工作,缓慢放电至3.0 V。当电池输出降至3.0 V以下时,系统就会关闭,防止电池因过度放电而受损。采用低压差调节器产生3.3 V电压轨时,系统会在

  时关断,此时只用了电池所存储电能的70% 。但如果采用降压/升压调节器(如ADP2503或ADP2504),系统就可以持续工作到最小实际电池电压。ADP2503和ADP2504 (参见 附录) 均为高效率、600 mA和1000 mA低静态电流、降压/升压DC-DC转换器,工作时的输入电压可高于、低于或等于稳压输出电压。电源开关采用内置形式,最大限度地减少了外部元件的数量和印刷电路板(PCB)的面积。通过这种方法,系统能一直工作到3.0 V,从而充分的利用电池存储的电能,增加了电池要重新充电前的系统工作时间。

  为了节省便携式系统的电能,各种子系统(如微处理器、显示屏背光和功率放大器)不用时会在全开 和休眠模式之间经常性更换,造成电池电源线路上较大的电压瞬变。这些瞬变会使电池输出电压短时降至3.0 V以下,并触发低电量警告,从而使系统在电池完全放电前关闭。降压/升压解决方案能承受的电压摆幅低至2.3 V,有助于维持系统潜在的上班时间。


Copyright © 2018 火狐体育安卓版下载_欧宝体育官方入口网站 电子垃圾提金设备